(x-4)/(x-2) + 8/x = 2/(x+2)
Multiply each term in the equation by x(x-2)(x+2) to clear the denominators:
x(x-4) + 8(x-2)(x+2) = 2x(x-2)
Expand and simplify:
x^2 - 4x + 8(x^2 - 4) = 2x(x^2 - 2x)
x^2 - 4x + 8x^2 - 32 = 2x^3 - 4x^2
9x^2 - 4x - 32 = 2x^3 - 4x^2
Rearrange and simplify:
2x^3 - 9x^2 + 4x - 32 = 0
(x-1)/(x+4) + (x-9)/(4-x) = 40/(x^2 - 16)
To simplify this equation, first combine the fractions on the left side:
[(x-1)(4-x) + (x-9)(x+4)] / [(x+4)(4-x)] = 40/(x^2 - 16)
[(x^2 - 5x + 4 + x^2 - 5x - 36)] / [(x+4)(4-x)] = 40/(x^2 - 16)
[2x^2 - 10x - 32] / [(x+4)(x-4)] = 40/(x^2 - 16)
Simplify and cross multiply:
(2x^2 - 10x - 32)(x^2 - 16) = 40[(x+4)(x-4)]
Expand and solve:
2x^4 - 10x^3 - 32x^2 + 160x^2 - 800 - 128 = 40(x^2 - 16)
2x^4 - 10x^3 + 128x^2 - 800x - 128 = 40x^2 - 640
2x^4 - 10x^3 + 88x^2 - 800x - 640 = 0
This is the simplified form of the equation.
(x-4)/(x-2) + 8/x = 2/(x+2)
Multiply each term in the equation by x(x-2)(x+2) to clear the denominators:
x(x-4) + 8(x-2)(x+2) = 2x(x-2)
Expand and simplify:
x^2 - 4x + 8(x^2 - 4) = 2x(x^2 - 2x)
x^2 - 4x + 8x^2 - 32 = 2x^3 - 4x^2
9x^2 - 4x - 32 = 2x^3 - 4x^2
Rearrange and simplify:
2x^3 - 9x^2 + 4x - 32 = 0
(x-1)/(x+4) + (x-9)/(4-x) = 40/(x^2 - 16)
To simplify this equation, first combine the fractions on the left side:
[(x-1)(4-x) + (x-9)(x+4)] / [(x+4)(4-x)] = 40/(x^2 - 16)
[(x^2 - 5x + 4 + x^2 - 5x - 36)] / [(x+4)(4-x)] = 40/(x^2 - 16)
[2x^2 - 10x - 32] / [(x+4)(x-4)] = 40/(x^2 - 16)
Simplify and cross multiply:
(2x^2 - 10x - 32)(x^2 - 16) = 40[(x+4)(x-4)]
Expand and solve:
2x^4 - 10x^3 - 32x^2 + 160x^2 - 800 - 128 = 40(x^2 - 16)
2x^4 - 10x^3 + 128x^2 - 800x - 128 = 40x^2 - 640
Rearrange and simplify:
2x^4 - 10x^3 + 88x^2 - 800x - 640 = 0
This is the simplified form of the equation.