To prove the given equation, we can use the product-to-sum trigonometric identity:
sinAcosB = (1/2)[sin(A + B) + sin(A - B)]
Let A = 3x and B = x:
sin(3x)cos(x) = (1/2)[sin(3x + x) + sin(3x - x)]sin(3x)cos(x) = (1/2)[sin(4x) + sin(2x)]
Applying the identity for sin(2x):
sin(3x)cos(x) = (1/2)[sin(4x) + 2sin(x)cos(x)]
Now, we can substitute sin(4x) with 2sin(2x)cos(2x):
sin(3x)cos(x) = (1/2)[2sin(2x)cos(2x) + 2sin(x)cos(x)]
Apply the double angle formula for sin(2x) and cos(2x):
sin(3x)cos(x) = sin(x)(2cos^2(x) - 1) + 2sin(x)cos^2(x)
sin(3x)cos(x) = 2sin(x)cos^2(x) - sin(x) + 2sin(x)cos^2(x)
sin(3x)cos(x) = 4sin(x)cos^2(x) - sin(x)
sin(3x)cos(x) - sin(x)cos(3x) = sin(x)
Therefore, sin(3x)cos(x) - sin(x)cos(3x) = 1.
To prove the given equation, we can use the product-to-sum trigonometric identity:
sinAcosB = (1/2)[sin(A + B) + sin(A - B)]
Let A = 3x and B = x:
sin(3x)cos(x) = (1/2)[sin(3x + x) + sin(3x - x)]
sin(3x)cos(x) = (1/2)[sin(4x) + sin(2x)]
Applying the identity for sin(2x):
sin(3x)cos(x) = (1/2)[sin(4x) + 2sin(x)cos(x)]
Now, we can substitute sin(4x) with 2sin(2x)cos(2x):
sin(3x)cos(x) = (1/2)[2sin(2x)cos(2x) + 2sin(x)cos(x)]
Apply the double angle formula for sin(2x) and cos(2x):
sin(3x)cos(x) = sin(x)(2cos^2(x) - 1) + 2sin(x)cos^2(x)
sin(3x)cos(x) = 2sin(x)cos^2(x) - sin(x) + 2sin(x)cos^2(x)
sin(3x)cos(x) = 4sin(x)cos^2(x) - sin(x)
sin(3x)cos(x) - sin(x)cos(3x) = sin(x)
Therefore, sin(3x)cos(x) - sin(x)cos(3x) = 1.