Обозначим скорость пароплава как V, а скорость течения реки как U.
Из условия задачи составим систему уравнения:5(V+U) + 3(V-U) = 2302(V+U) + 7(V-U) = 237
Решим систему уравнений методом подстановки или исключения переменных.
Решение:5V + 5U + 3V - 3U = 2308V + 8U = 230V + U = 28,75
2V + 2U + 7V - 7U = 2379V - 5U = 2379V - 5(28,75 - V) = 2379V - 143.75 + 5V = 23714V = 380.75V = 27,1975
Зная скорость пароплава V, найдем скорость течения реки U:V + U = 28.7527.1975 + U = 28.75U = 1.5525
Ответ: скорость пароплава - 27,1975 км/ч, скорость течения реки - 1,5525 км/ч.
Обозначим скорость пароплава как V, а скорость течения реки как U.
Из условия задачи составим систему уравнения:
5(V+U) + 3(V-U) = 230
2(V+U) + 7(V-U) = 237
Решим систему уравнений методом подстановки или исключения переменных.
Решение:
5V + 5U + 3V - 3U = 230
8V + 8U = 230
V + U = 28,75
2V + 2U + 7V - 7U = 237
9V - 5U = 237
9V - 5(28,75 - V) = 237
9V - 143.75 + 5V = 237
14V = 380.75
V = 27,1975
Зная скорость пароплава V, найдем скорость течения реки U:
V + U = 28.75
27.1975 + U = 28.75
U = 1.5525
Ответ: скорость пароплава - 27,1975 км/ч, скорость течения реки - 1,5525 км/ч.