First, let's simplify the expression:
(√21 + √14 - 2√35) √7 = √21 √7 + √14 √7 - 2√35 √7= √147 + √98 - 14√5= 7√3 + 7√2 - 14√5
Now, we multiply this result by √7 and divide by 7:
(7√3 + 7√2 - 14√5) * √7 / 7= (7√21 + 7√14 - 14√35) / 7= √21 + √14 - 2√35
Finally, we add √20 to the result:
√21 + √14 - 2√35 + √20= √21 + √14 - 2√35 + 2√5= √21 + √14 + 2√5 - 2√35
Therefore, (√21+√14-2√35)*√7/7 + √20 simplifies to √21 + √14 + 2√5 - 2√35.
First, let's simplify the expression:
(√21 + √14 - 2√35) √7 = √21 √7 + √14 √7 - 2√35 √7
= √147 + √98 - 14√5
= 7√3 + 7√2 - 14√5
Now, we multiply this result by √7 and divide by 7:
(7√3 + 7√2 - 14√5) * √7 / 7
= (7√21 + 7√14 - 14√35) / 7
= √21 + √14 - 2√35
Finally, we add √20 to the result:
√21 + √14 - 2√35 + √20
= √21 + √14 - 2√35 + 2√5
= √21 + √14 + 2√5 - 2√35
Therefore, (√21+√14-2√35)*√7/7 + √20 simplifies to √21 + √14 + 2√5 - 2√35.