1) Z1+Z2 = (2-2i) + (1+√3i) = 3 + √3i2) Z1Z2 = (2-2i)(1+√3i) = 2 + 2√3i - 2i - 2i^2 = 2 + 2√3i + 2 - 2 = 4 + 2√3i3) Z1Z2^2 = (2-2i)(1+√3i)^2 = (2-2i)(1 + 3i - 3) = (2-2i)(-2 + 3i) = -4 + 6i - 2i + 3i^2 = -4 + 4i + 3 = -1 + 4i4) Z1/Z2 = (2-2i)/(1+√3i) = ((2-2i)(1-√3i))/((1+√3i)(1-√3i)) = (2-2i-2√3i-2i)/(1^2 - (√3)^2(i^2)) = (2-4i-2√3i-2i)/(1 + 3) = (2-6i-2√3i)/(4) = (1 - 3i - √3i)
1) Z1+Z2 = (2-2i) + (1+√3i) = 3 + √3i
2) Z1Z2 = (2-2i)(1+√3i) = 2 + 2√3i - 2i - 2i^2 = 2 + 2√3i + 2 - 2 = 4 + 2√3i
3) Z1Z2^2 = (2-2i)(1+√3i)^2 = (2-2i)(1 + 3i - 3) = (2-2i)(-2 + 3i) = -4 + 6i - 2i + 3i^2 = -4 + 4i + 3 = -1 + 4i
4) Z1/Z2 = (2-2i)/(1+√3i) = ((2-2i)(1-√3i))/((1+√3i)(1-√3i)) = (2-2i-2√3i-2i)/(1^2 - (√3)^2(i^2)) = (2-4i-2√3i-2i)/(1 + 3) = (2-6i-2√3i)/(4) = (1 - 3i - √3i)