Если вероятность события 4%, то сколько нужно попыток, чтобы увидеть это события хотя бы один раз?

1 Янв 2020 в 19:49
146 +1
0
Ответы
1

Чтобы найти количество попыток, необходимых для увидеть событие хотя бы один раз с вероятностью 4%, можно воспользоваться формулой обратной вероятности.

Для события с вероятностью 4% вероятность того, что событие не произойдет, равна 96%.

Таким образом, вероятность того, что событие не произойдет в одной попытке равна 0,96.

Чтобы получить вероятность того, что событие не произойдет в k попытках, нужно умножить вероятности не произойти событие в каждой из k попыток:
0,96^k.

Тогда вероятность того, что событие произойдет хотя бы один раз в k попытках будет равна 1 - вероятность того, что событие не произойдет ни разу в k попытках:
1 - 0,96^k.

Теперь равенство:
1 - 0,96^k = 0,04.

Далее решаем уравнение, чтобы найти значение k, то есть количество попыток, необходимых для увидеть событие хотя бы один раз.

18 Апр 2024 в 22:01
Не можешь разобраться в этой теме?
Обратись за помощью к экспертам
Название заказа не должно быть пустым
Введите email
Бесплатные доработки
Гарантированные бесплатные доработки
Быстрое выполнение
Быстрое выполнение от 2 часов
Проверка работы
Проверка работы на плагиат
Интересные статьи из справочника
Поможем написать учебную работу
Название заказа не должно быть пустым
Введите email
Доверьте свою работу экспертам
Разместите заказ
Наша система отправит ваш заказ на оценку 96 005 авторам
Первые отклики появятся уже в течение 10 минут
Прямой эфир