5 Июл 2019 в 09:08
286 +1
0
Ответы
1

Фон Нейман определил суть теории игр и создал условия для возникновения новой математической теории. С этого момента игры перестали быть развлечением и превратились в сценарий, в котором двое или более человек могли развивать рациональные стратегии, чтобы повлиять на результат партии. Сценарии могли быть абсолютно разными, и для их реализации был необходим такой сложный и фундаментальный аспект, как принятие решений.

Игра — это деятельность, присущая не только человеку, но и большинству высших млекопитающих. Доказано, что игра сама по себе является неотъемлемой частью процессов обучения и развития многих важных качеств. Именно через игру животные учатся координировать свои движения, чтобы охотиться, нападать, защищаться, именно через игру человек развивает многие способности, используя различные элементы для симуляции реальности. Для игры важны три фактора: сценарий, случайность и заклад.Сценарий игры — первый шаг к пониманию ее структуры, он позволяет создавать математические модели в очень простых ситуациях, таких как партия в шашки, или в очень сложных — например, в настоящем военном сражении.

В любой игре всегда в той или иной степени присутствует случай, который определяет уровень инициативы игроков при выборе стратегии. В играх, где случай почти не играет роли, например в шахматах, инициатива игроков имеет решающее значение. Напротив, в играх, целиком построенных на случае, например при подкидывании монеты, инициатива игроков ограничена закладом.

Заклад — это то, на что идет игра. Он может быть нематериальным — как, например, умения или честь игрока, а вот в игре в рулетку на кону может стоять даже жизнь. В любом случае во всех играх есть тот или иной заклад, даже когда никто ни на что не играет и когда нельзя определить, кто выиграл, а кто проиграл. Самая важная характеристика заклада состоит в том, что ему можно присвоить номер. В самом простом случае, когда речь идет о выигрыше или проигрыше, номера могут быть соответственно 1 и 0. Когда чему-то можно присвоить номер, значит, к нему можно применить математический подход.

Теория вероятностей и статистика появились как следствие систематического изучения игр, но, скорее, их предметом было предугадывание результата, а не сама природа игры. Уже в первых работах фон Неймана содержалась другая точка зрения, очень далекая от статистических подсчетов. В них игра проявила другую свою сущность: она предстала не как событие, зависящее главным образом от воли случая, а как конфликт интересов. В этом смысле исследования фон Неймана необходимо рассматривать как первые в своем роде. Именно из них позже появилась новая ветвь математики — теория игр.

Трудно сказать точно, когда и где фон Нейман впервые заинтересовался математическим аспектом теории игр, поскольку у нас нет об этом ни письменных, ни устных свидетельств. В конце 1926 года, еще будучи стипендиатом Геттингенского университета, он поразил всех, собрав конференцию по теории игр в помещении Математического общества университета. После нее фон Нейман написал статью, которую направил в журнал Mathematische Annalen. Работа была опубликована год спустя под заголовком Zur Theorie der Gesellschaftsspiele («Л* теории стратегических игр»). Потом его будто бы оставил интерес к этой теме, но мы можем и ошибаться в своем предположении, потому что 18 лет спустя вместе с экономистом Оскаром Моргенштерном фон Нейман опубликовал книгу о теории игр, которая сегодня считается одной из самых важных из всего его наследия.

В своей первой работе ученый провел математическую формализацию антагонистических ситуаций, в которых участвуют два игрока. Особенно его интересовали возможные стратегии, которые могут развивать игроки в играх с нулевой суммой, по определению фон Неймана.

Теория игр очень многогранна и может применяться не только в игровых ситуациях. Ее суть состоит в том, чтобы определить стратегию и формализовать принятие решений. Существует пример, который, благодаря своей необыкновенной простоте, часто используется, чтобы объяснить, какие цели преследует теория игр: разрезание торта.

Предположим, два человека должны поделить торт. Обычно в этом примере речь идет о детях: считается, что дети очень любят сладкое и потому хотят получить самый большой кусок, и это позволяет лучше понять ситуацию. Детский индивидуализм — идеальное качество для нужных нам игроков. Дележ торта будет происходить так: ребенок А будет резать торт, а ребенок В — первым выбирать себе кусок. Таким образом, ребенок А должен всегда помнить о ребенке В и о том, что после того, как он разрежет весь торт, В заберет себе самый большой кусок. Это условие является основополагающим для выбора наилучшей стратегии, которая, разумеется, состоит в том, чтобы разрезать торт на две равные части. Любой другой вариант опасен. Если, например, А подумает, что В — очень хороший и воспитанный ребенок и потому возьмет себе кусок поменьше, то он начнет резать торт на неравные куски. Но это решение содержит много рисков и основывается на догадках или дополнительной информации, которая не имеет ничего общего с игрой.

Это объяснение может показаться слишком простым, но в нем содержатся все ключевые элементы, определяющие сценарий, выбранный для теории игр. Ситуация типа «я играю только для того, чтобы приятно провести время, меня не беспокоит проигрыш, и вообще я могу позволить выиграть своему противнику» может быть вполне оправданной во многих сценариях, но не в теории игр. В ней игроки рассматриваются прежде всего как рациональные люди, чья цель — выиграть, а для этого им нужно думать о себе.

Требование к рациональности игроков довольно глубокое. Оно предполагает идеальную ситуацию, так как никто не в состоянии держать в уме все возможные ходы и каждый раз принимать нужное решение, чтобы выиграть любой ценой. Игры с простой структурой, такие как «ним», позволяют дойти до такого уровня без особого труда, поскольку в них деревья принятия решений имеют мало ветвей, и если оба игрока абсолютно рациональны в нужном нам смысле, то либо они придут к ничьей, либо выиграет тот, кто сделал первый ход. Другие игры, например го или шахматы, тоже обладают этими характеристиками, но уровень их сложности гораздо выше, и не допустить погрешностей фактически невозможно.

27 Июл 2019 в 16:11
Не можешь разобраться в этой теме?
Обратись за помощью к экспертам
Название заказа не должно быть пустым
Введите email
Бесплатные доработки
Гарантированные бесплатные доработки
Быстрое выполнение
Быстрое выполнение от 2 часов
Проверка работы
Проверка работы на плагиат
Интересные статьи из справочника
Поможем написать учебную работу
Название заказа не должно быть пустым
Введите email
Доверьте свою работу экспертам
Разместите заказ
Наша система отправит ваш заказ на оценку 93 100 авторам
Первые отклики появятся уже в течение 10 минут
Прямой эфир