Две длинные параллельные друг другу нити равномерно заряжены с линейной плотностью заряда Л. Расстояние между нитями L. Найти максимальное значение напряженности электрического поля в плоскости симметрии этой системы, расположенной между нитями

22 Мая 2020 в 19:40
146 +1
0
Ответы
1

Для нахождения максимального значения напряженности электрического поля в плоскости симметрии системы с двумя параллельными нитями с равномерно распределенным зарядом можно воспользоваться законом Кулона.

Пусть расстояние от плоскости, проходящей через центры нитей, до точки рассматриваемой плоскости равно h.

Тогда напряженность электрического поля в точке между нитями будет равна сумме напряженностей, создаваемых каждой из нитей в этой точке.

Так как распределение заряда на нитях равномерное, то можно считать, что вся линейная плотность заряда Л распределена равномерно по длине нити.

Таким образом, напряженность электрического поля в точке между нитями будет равна:
E = 2 (k Л * h) / ((h^2 + (L/2)^2)^(3/2))

Здесь k - постоянная Кулона.

Максимальное значение напряженности электрического поля достигается при h = 0 (в самой близкой точке к нитям), поэтому:
E_max = 2 (k Л) / ((L/2)^2)^(3/2) = 4 k Л / L^2

E_max = 4 k Л / L^2

Таким образом, максимальное значение напряженности электрического поля в плоскости симметрии системы равно 4 k Л / L^2.

18 Апр в 11:49
Не можешь разобраться в этой теме?
Обратись за помощью к экспертам
Название заказа не должно быть пустым
Введите email
Бесплатные доработки
Гарантированные бесплатные доработки
Быстрое выполнение
Быстрое выполнение от 2 часов
Проверка работы
Проверка работы на плагиат
Интересные статьи из справочника
Поможем написать учебную работу
Название заказа не должно быть пустым
Введите email
Доверьте свою работу экспертам
Разместите заказ
Наша система отправит ваш заказ на оценку 92 648 авторам
Первые отклики появятся уже в течение 10 минут
Прямой эфир