Для определения массы планеты воспользуемся формулой для плотности:
p = m / V,
где p - плотность планеты, m - масса планеты, V - объем планеты.
Так как планета сферическая, то ее объем можно выразить через радиус r:
V = (4/3)πr^3.
Также известно, что на поверхности планеты ускорение свободного падения связано с массой и радиусом планеты следующим образом:
g = (G * m) / r^2.
Отсюда можем выразить массу планеты через радиус и ускорение свободного падения:
m = (g * r^2) / G.
Теперь подставим выражение для массы в формулу для плотности и выразим массу через плотность и радиус:
p = m / ((4/3)πr^3),
m = p * (4/3)πr^3.
Подставим найденное выражение для массы через ускорение свободного падения, радиус и гравитационную постоянную:
m = p (4/3)πr^3 = p (4/3)π (g r^2) / G.
Теперь подставим известные значения и рассчитаем массу планеты:
p = 1,25 г/см^3 = 1250 кг/м^3,g = 24,9 м/с^2,G = 6,6710^(-11) Hm^2/kg^2.
Плотность в кг/м^3 нужно умножить на 1000 для перевода из г/см^3 в кг/м^3.
m = 1250 (4/3)π (24,9 r^2) / 6,6710^(-11),
m = 5,2410^5 r^2.
Таким образом, масса планеты будет равна 5,2410^5 r^2 кг.
Для точного определения массы планеты нам нужно знать ее радиус.
Для определения массы планеты воспользуемся формулой для плотности:
p = m / V,
где p - плотность планеты, m - масса планеты, V - объем планеты.
Так как планета сферическая, то ее объем можно выразить через радиус r:
V = (4/3)πr^3.
Также известно, что на поверхности планеты ускорение свободного падения связано с массой и радиусом планеты следующим образом:
g = (G * m) / r^2.
Отсюда можем выразить массу планеты через радиус и ускорение свободного падения:
m = (g * r^2) / G.
Теперь подставим выражение для массы в формулу для плотности и выразим массу через плотность и радиус:
p = m / ((4/3)πr^3),
m = p * (4/3)πr^3.
Подставим найденное выражение для массы через ускорение свободного падения, радиус и гравитационную постоянную:
m = p (4/3)πr^3 = p (4/3)π (g r^2) / G.
Теперь подставим известные значения и рассчитаем массу планеты:
p = 1,25 г/см^3 = 1250 кг/м^3,
g = 24,9 м/с^2,
G = 6,6710^(-11) Hm^2/kg^2.
Плотность в кг/м^3 нужно умножить на 1000 для перевода из г/см^3 в кг/м^3.
m = 1250 (4/3)π (24,9 r^2) / 6,6710^(-11),
m = 5,2410^5 r^2.
Таким образом, масса планеты будет равна 5,2410^5 r^2 кг.
Для точного определения массы планеты нам нужно знать ее радиус.