Работа электрического поля Два одинаковых металлических шарика с зарядами 50 и –6 нКл находились на расстоянии 1 м друг от друга. Определите, какую работу совершит электрическое поле при уменьшении расстояния между шариками в 5 раз.
Для нахождения работы, которую совершит электрическое поле при уменьшении расстояния между шариками в 5 раз, воспользуемся формулой для работы электрического поля:
[ W = \frac{k \cdot q_1 \cdot q_2}{r} ]
Где: ( W ) - работа электрического поля, ( k ) - постоянная Кулона, ( k = 9 \cdot 10^9 N\cdot m^2/C^2 ), ( q_1 ) и ( q_2 ) - заряды шариков, ( r ) - расстояние между шариками.
Исходя из условия задачи, получаем:
( q_1 = 50 \cdot 10^{-9} C ), ( q2 = -6 \cdot 10^{-9} C ), ( r{\text{нов}} = \frac{r_{\text{стар}}}{5} = \frac{1}{5} ) м.
Для нахождения работы, которую совершит электрическое поле при уменьшении расстояния между шариками в 5 раз, воспользуемся формулой для работы электрического поля:
[ W = \frac{k \cdot q_1 \cdot q_2}{r} ]
Где:
( W ) - работа электрического поля,
( k ) - постоянная Кулона, ( k = 9 \cdot 10^9 N\cdot m^2/C^2 ),
( q_1 ) и ( q_2 ) - заряды шариков,
( r ) - расстояние между шариками.
Исходя из условия задачи, получаем:
( q_1 = 50 \cdot 10^{-9} C ),
( q2 = -6 \cdot 10^{-9} C ),
( r{\text{нов}} = \frac{r_{\text{стар}}}{5} = \frac{1}{5} ) м.
Теперь можем подставить значения в формулу:
[ W = \frac{9 \cdot 10^9 \cdot 50 \cdot 10^{-9} \cdot (-6) \cdot 10^{-9}}{\frac{1}{5}} = -270 \, \text{Дж} ]
Ответ: работа, которую совершит электрическое поле при уменьшении расстояния между шариками в 5 раз, равна -270 Дж.