Физика. Белый свет нормально падает на дифракционную решетку. Белый свет нормально падает на дифракционную решетку. При этом спектры 3-го и 4-го порядка частично перекрываются. Определите длину волны в диапазоне 4-го порядка, которая накладывается на волну длиной 620 нм в диапазоне 3-го порядка. Считайте sin a = tga. Ответ дайте в нм.
Для определения длины волны в диапазоне 4-го порядка, которая накладывается на длину волны 620 нм в диапазоне 3-го порядка, можем использовать формулу дифракционной решетки:
nλ = d * (sinθ + sinα),
где n - порядок спектра, λ - длина волны, d - период решетки, θ - угол дифракции для n-го порядка, α - угол прохождения света через решетку.
Для 3-го порядка: 3 620 = d (sinθ + sinα).
Для 4-го порядка: 4 λ = d (sinθ + sinα).
Выразим sinθ из первого уравнения и подставим во второе уравнение: sinθ = (3 * 620 / d) - sinα.
(4 λ) = d ((3 * 620 / d) - sinα + sinα).
4λ = 1860 - d * sinα.
Таким образом, длина волны в диапазоне 4-го порядка, которая накладывается на волну длиной 620 нм в диапазоне 3-го порядка, равна 1860 нм.
Для определения длины волны в диапазоне 4-го порядка, которая накладывается на длину волны 620 нм в диапазоне 3-го порядка, можем использовать формулу дифракционной решетки:
nλ = d * (sinθ + sinα),
где n - порядок спектра, λ - длина волны, d - период решетки, θ - угол дифракции для n-го порядка, α - угол прохождения света через решетку.
Для 3-го порядка:
3 620 = d (sinθ + sinα).
Для 4-го порядка:
4 λ = d (sinθ + sinα).
Выразим sinθ из первого уравнения и подставим во второе уравнение:
sinθ = (3 * 620 / d) - sinα.
(4 λ) = d ((3 * 620 / d) - sinα + sinα).
4λ = 1860 - d * sinα.
Таким образом, длина волны в диапазоне 4-го порядка, которая накладывается на волну длиной 620 нм в диапазоне 3-го порядка, равна 1860 нм.