Определите глубину колодца если камень упавший в него достигает дна за 3с. Определите глубину колодца если камень упавший в него достигает дна за 3с С какой скоростью двигался камень? Начальную скорость камня считать равно нулю
Чтобы определить глубину колодца, в котором камень падает свободно, мы можем использовать уравнение движения с постоянным ускорением. При этом начальная скорость ( v_0 = 0 ), а ускорение ( a = g ) (ускорение свободного падения, приблизительно равное ( 9.81 \, \text{м/с}^2 )).
Согласно уравнению движения, пройденное расстояние ( s ) можно вычислить по формуле:
Чтобы определить глубину колодца, в котором камень падает свободно, мы можем использовать уравнение движения с постоянным ускорением. При этом начальная скорость ( v_0 = 0 ), а ускорение ( a = g ) (ускорение свободного падения, приблизительно равное ( 9.81 \, \text{м/с}^2 )).
Согласно уравнению движения, пройденное расстояние ( s ) можно вычислить по формуле:
[
s = v_0 t + \frac{1}{2} a t^2
]
Подставим известные значения:
[
s = 0 \cdot 3 + \frac{1}{2} \cdot 9.81 \cdot (3^2)
]
[
s = \frac{1}{2} \cdot 9.81 \cdot 9
]
[
s = 4.905 \cdot 9
]
[
s \approx 44.145 \, \text{м}
]
Таким образом, глубина колодца примерно равна 44.15 метра.
Теперь определим скорость камня в момент, когда он достиг дна колодца. Скорость можно вычислить по формуле:
[
v = v_0 + a t
]
Подставим значения:
[
v = 0 + 9.81 \cdot 3
]
[
v \approx 29.43 \, \text{м/с}
]
Итак, глубина колодца составляет примерно 44.15 метра, а скорость камня при достижении дна колодца составляет примерно 29.43 м/с.