Пружинный маятник совершает горизонтальные колебания на Земле без трения с периодом T1....
Пружинный маятник совершает горизонтальные колебания на Земле без трения с периодом T1. Период его колебаний на Луне, где сила тяжести меньше в 6 раз равна T2. Найдите отношение T2÷T1

8 Июл 2019 в 07:14
173 +1
0
Ответы
1

Из уравнения периода колебаний пружинного маятника:

T = 2π√(m/k),

где m - масса груза, крепящегося к пружине, k - жесткость пружины.

Так как период колебаний зависит от силы тяжести, то его можно выразить через отношение сил тяжести на Земле и Луне:

g_Luna = 1/6 * g_Earth.

Сила упругости пружины не зависит от местоположения, так что k = const.

Тогда отношение периодов колебаний на Луне и на Земле:

T2/T1 = √(g_Luna/g_Earth).

T2/T1 = √(1/6) = 1/√6 = √(6)/6 = (2√6)/6 = √6/3 ≈ 0.816.

Ответ: T2/T1 ≈ 0.816.

20 Апр в 23:50
Не можешь разобраться в этой теме?
Обратись за помощью к экспертам
Название заказа не должно быть пустым
Введите email
Бесплатные доработки
Гарантированные бесплатные доработки
Быстрое выполнение
Быстрое выполнение от 2 часов
Проверка работы
Проверка работы на плагиат
Интересные статьи из справочника
Поможем написать учебную работу
Название заказа не должно быть пустым
Введите email
Доверьте свою работу экспертам
Разместите заказ
Наша система отправит ваш заказ на оценку 92 588 авторам
Первые отклики появятся уже в течение 10 минут
Прямой эфир