Потенциал ведущего шара радиусом 10 см равняется 3 кВ. Определите потенциал поля шара в точке отдаленной на 5 см от ее поверхности.

6 Янв 2020 в 19:49
96 +1
0
Ответы
1

Для определения потенциала поля в точке отдаленной на 5 см от поверхности шара, мы можем воспользоваться законом сохранения электрического заряда.

Потенциал ведущего шара можно рассчитать по формуле:
V = k q / r,
где V - потенциал ведущего шара, k - постоянная Кулона (8,99 10^9 Н * м^2 / Кл^2), q - заряд шара, r - радиус шара.

Так как потенциал ведущего шара равен 3 кВ (3000 В), то подставляем известные значения в формулу:
3000 = 8,99 10^9 q / 0,1,
3000 = 8,99 10^11 q,
q = 3000 / 8,99 10^11,
q = 3,34 10^-9 Кл.

Теперь можем рассчитать потенциал поля шара в точке отдаленной на 5 см от его поверхности. Расстояние от точки до центра шара будет составлять 10 + 5 = 15 см. Потенциал поля можно рассчитать по формуле:
V' = k q / r',
где V' - потенциал поля шара в точке отдаленной на 5 см от его поверхности, k - постоянная Кулона (8,99 10^9 Н * м^2 / Кл^2), q - заряд шара, r' - расстояние от центра шара до точки.

Подставляем известные значения:
V' = 8,99 10^9 3,34 10^-9 / 0,15,
V' = 8,99 3,34 / 15,
V' = 2 кВ.

Ответ: потенциал поля шара в точке отдаленной на 5 см от его поверхности равен 2 кВ.

18 Апр в 21:23
Не можешь разобраться в этой теме?
Обратись за помощью к экспертам
Название заказа не должно быть пустым
Введите email
Бесплатные доработки
Гарантированные бесплатные доработки
Быстрое выполнение
Быстрое выполнение от 2 часов
Проверка работы
Проверка работы на плагиат
Интересные статьи из справочника
Поможем написать учебную работу
Название заказа не должно быть пустым
Введите email
Доверьте свою работу экспертам
Разместите заказ
Наша система отправит ваш заказ на оценку 91 947 авторам
Первые отклики появятся уже в течение 10 минут
Прямой эфир