Данная фигура ограничена графиком функции y=3x^2, осью Ox, прямыми x=0 и x=2.
Для нахождения площади под этим графиком нам нужно вычислить определенный интеграл функции y=3x^2 на отрезке [0, 2]:
S = ∫[0,2] 3x^2 dx
S = [x^3] [0,2]S = 2^3 - 0^3S = 8
Площадь фигуры, ограниченной графиком функции y=3x^2, осью Ox и прямыми x=0 и x=2, равна 8.
Данная фигура ограничена графиком функции y=3x^2, осью Ox, прямыми x=0 и x=2.
Для нахождения площади под этим графиком нам нужно вычислить определенный интеграл функции y=3x^2 на отрезке [0, 2]:
S = ∫[0,2] 3x^2 dx
S = [x^3] [0,2]
S = 2^3 - 0^3
S = 8
Площадь фигуры, ограниченной графиком функции y=3x^2, осью Ox и прямыми x=0 и x=2, равна 8.