Для решения этой задачи нам нужно использовать теорему Пифагора.
Сначала найдем CD с помощью теоремы Пифагора:
CD^2 = BC^2 + BD^2CD^2 = 21^2 + 27^2CD^2 = 441 + 729CD^2 = 1170CD = √1170CD ≈ 34.2
Теперь найдем длину отрезка AD, который является гипотенузой прямоугольного треугольника ACD:
AD^2 = AC^2 + CD^2AC = 21AD^2 = 21^2 + 34.2^2AD^2 = 441 + 1171.64AD^2 = 1612.64AD = √1612.64AD ≈ 40.2
Итак, длина отрезка AD примерно равна 40.2.
Для решения этой задачи нам нужно использовать теорему Пифагора.
Сначала найдем CD с помощью теоремы Пифагора:
CD^2 = BC^2 + BD^2
CD^2 = 21^2 + 27^2
CD^2 = 441 + 729
CD^2 = 1170
CD = √1170
CD ≈ 34.2
Теперь найдем длину отрезка AD, который является гипотенузой прямоугольного треугольника ACD:
AD^2 = AC^2 + CD^2
AC = 21
AD^2 = 21^2 + 34.2^2
AD^2 = 441 + 1171.64
AD^2 = 1612.64
AD = √1612.64
AD ≈ 40.2
Итак, длина отрезка AD примерно равна 40.2.