Биссектриса равнобедренного треугольника делит высоту, проведенную к основанию, на отрезки длиной 20 см и 16 см. Найдите периметр треугольника.

31 Июл 2021 в 19:42
75 +1
0
Ответы
1

Пусть основание равнобедренного треугольника равно 2x, тогда биссектриса делит его на две равные части по x.

Так как биссектриса делит высоту на отрезки длиной 20 и 16 см, то получаем уравнение:

x + 20 = 2x + 16
x = 4

Следовательно, высота треугольника равна 20 + 4 = 24 см.

Так как треугольник равнобедренный, его высота, биссектриса и медиана совпадают.

Периметр равнобедренного треугольника равен:

P = 2a + b,
где а - основание, b - сторона

Так как высота делит биссектрису, получаем, что b = 16 + 4 = 20 см.

Значит, периметр равнобедренного треугольника равен:

P = 224 + 20 = 16 + 20 = 36 см.

Ответ: Периметр треугольника равен 36 см.

17 Апр в 13:50
Не можешь разобраться в этой теме?
Обратись за помощью к экспертам
Название заказа не должно быть пустым
Введите email
Бесплатные доработки
Гарантированные бесплатные доработки
Быстрое выполнение
Быстрое выполнение от 2 часов
Проверка работы
Проверка работы на плагиат
Интересные статьи из справочника
Поможем написать учебную работу
Название заказа не должно быть пустым
Введите email
Доверьте свою работу экспертам
Разместите заказ
Наша система отправит ваш заказ на оценку 92 548 авторам
Первые отклики появятся уже в течение 10 минут
Прямой эфир