Угол параллелограмма равен 1200, большая диагональ 14 см, а одна из сторон - 6 см. Найдите периметр параллелограмма.

17 Авг 2021 в 19:44
66 +1
0
Ответы
1

Для решения задачи воспользуемся формулой косинусов для параллелограмма:

Периметр параллелограмма P = 2a + 2b,

где a и b - стороны параллелограмма.

Из формулы косинусов:

c^2 = a^2 + b^2 - 2ab * cos(угол)

где c - диагональ, а угол 120 градусов.

Подставим известные значения:

14^2 = 6^2 + b^2 - 2 6 b * cos(120)

196 = 36 + b^2 - 12b * (-1/2)
196 = 36 + b^2 + 6b
b^2 + 6b - 160 = 0
(b + 16)(b - 10) = 0

b = 10 см (не можем взять -16 см, так как длина стороны не может быть отрицательной)

Теперь найдем вторую сторону параллелограмма:

a^2 = 6^2 - 10^2 * (-1/2)
a^2 = 36 - 25
a = sqrt(11)

Теперь найдем периметр:

P = 2 sqrt(11) + 2 10
P = 2sqrt(11) + 20 ≈ 26,32 см

Ответ: Периметр параллелограмма равен примерно 26,32 см.

17 Апр в 13:19
Не можешь разобраться в этой теме?
Обратись за помощью к экспертам
Название заказа не должно быть пустым
Введите email
Бесплатные доработки
Гарантированные бесплатные доработки
Быстрое выполнение
Быстрое выполнение от 2 часов
Проверка работы
Проверка работы на плагиат
Интересные статьи из справочника
Поможем написать учебную работу
Название заказа не должно быть пустым
Введите email
Доверьте свою работу экспертам
Разместите заказ
Наша система отправит ваш заказ на оценку 92 493 авторам
Первые отклики появятся уже в течение 10 минут
Прямой эфир