Дан прямоугольный параллелепипед abcda1b1c1d1, ab = 3,bc=2,bb1=4. Задайте прямоугольную систему координат oxyz и определите сумму координат точки пересечения диагоналей грани dd1c1c.
Для начала найдем координаты точек a, b, c, d, a1, b1, c1, d1:
Пусть точка A имеет координаты (0,0,0), тогда точка B будет иметь координаты (3,0,0). Для точки C данных нам недостаточно, поэтому обозначим y-координату точки С через у. Тогда точка C будет иметь координаты (3, у, 0). Используя то, что BC = 2, получаем y = 2.
Таким образом, координаты точек C и B будут равны (3, 2, 0) соответственно. Зная, что BB1 = 4, находим координаты точек B1 и C1: B1 (3, 2, 4) и C1(3, 0, 4).
Теперь найдем координаты точек D и D1. Точка D будет иметь координаты (0, 2, 0), так как AD = BC, а D1 - (0, 2, 4).
Теперь находим уравнения прямых, проходящих через точки DD1 и C1C, определяющих точку пересечения. Рассмотрим две плоскости:
Пусть уравнения плоскостей, проходящих через точки DD1C и C1С, задаются уравнениями: DD1: z = 1x + 0y + 1 C1C: 2x + 2z = 8
Решив систему уравнений, получаем, что x = 1, z = 3. Теперь зная, что y=2, координаты точки пересечения диагоналей грани dd1c1c будут равны (1, 2, 3).
Для начала найдем координаты точек a, b, c, d, a1, b1, c1, d1:
Пусть точка A имеет координаты (0,0,0), тогда точка B будет иметь координаты (3,0,0). Для точки C данных нам недостаточно, поэтому обозначим y-координату точки С через у. Тогда точка C будет иметь координаты (3, у, 0). Используя то, что BC = 2, получаем y = 2.
Таким образом, координаты точек C и B будут равны (3, 2, 0) соответственно. Зная, что BB1 = 4, находим координаты точек B1 и C1: B1 (3, 2, 4) и C1(3, 0, 4).
Теперь найдем координаты точек D и D1. Точка D будет иметь координаты (0, 2, 0), так как AD = BC, а D1 - (0, 2, 4).
Теперь находим уравнения прямых, проходящих через точки DD1 и C1C, определяющих точку пересечения. Рассмотрим две плоскости:
Пусть уравнения плоскостей, проходящих через точки DD1C и C1С, задаются уравнениями:
DD1: z = 1x + 0y + 1
C1C: 2x + 2z = 8
Решив систему уравнений, получаем, что x = 1, z = 3. Теперь зная, что y=2, координаты точки пересечения диагоналей грани dd1c1c будут равны (1, 2, 3).
Сумма координат этой точки будет равна 1+2+3=6.