Биссектрисы углов a и b прямоугольника abcd пересекаются в точке E,лежащей на стороне CD.докажите,что точка E - середина CD

14 Ноя 2021 в 19:45
104 +1
0
Ответы
1

Для доказательства того, что точка E является серединой отрезка CD, докажем, что треугольники CED и EDB равны.

Из условия задачи известно, что точка E является точкой пересечения биссектрис углов a и b прямоугольника ABCD.

Пусть AE и EB - биссектрисы углов a и b соответственно.

Также известно, что при пересечении двух биссектрис углов треугольника внутри этого треугольника образуется точка, которая равноудалена от всех сторон треугольника, то есть является его центром окружности, описанной вокруг этого треугольника.

Таким образом, точка E является центром описанной окружности треугольника CED.

Из равенства углов DCE и DAE следует, что треугольник CED равен треугольнику ADE (по двум углам и общей стороне).

Аналогично, из равенства углов DEC и EDB следует, что треугольник CED равен треугольнику EDB (по двум углам и общей стороне).

Следовательно, треугольник CED равен двум треугольникам ADE и EDB.

Из равенства треугольников следует, что CD равно AD и BD, то есть E является серединой отрезка CD.

17 Апр 2024 в 08:45
Не можешь разобраться в этой теме?
Обратись за помощью к экспертам
Название заказа не должно быть пустым
Введите email
Бесплатные доработки
Гарантированные бесплатные доработки
Быстрое выполнение
Быстрое выполнение от 2 часов
Проверка работы
Проверка работы на плагиат
Интересные статьи из справочника
Поможем написать учебную работу
Название заказа не должно быть пустым
Введите email
Доверьте свою работу экспертам
Разместите заказ
Наша система отправит ваш заказ на оценку 95 454 авторам
Первые отклики появятся уже в течение 10 минут
Прямой эфир