Из точки A к данной плоскости проведены перпендикуляр и наклонная пересекающие плоскость в точках B и С соответственно. Найдите отрезок AC если AB=5 см, угол CAB равен 30градусов.
Обозначим точку пересечения перпендикуляра с плоскостью за D.
Так как угол CAB равен 30 градусов, значит угол DAB также равен 30 градусов (так как AB перпендикулярен плоскости).
Теперь рассмотрим треугольник ABC. Из условия известно, что AB=5 см, угол CAB=30 градусов, угол ACB=90 градусов. Так как угол CAB = 30 градусов, угол BAC будет равен 60 градусов, так как треугольник является прямоугольным.
По теореме синусов: AC/sin60 = AB/sin30 AC/sin60 = 5/sin30 AC = 5sin60/sin30 AC = 5sqrt(3)
Обозначим точку пересечения перпендикуляра с плоскостью за D.
Так как угол CAB равен 30 градусов, значит угол DAB также равен 30 градусов (так как AB перпендикулярен плоскости).
Теперь рассмотрим треугольник ABC. Из условия известно, что AB=5 см, угол CAB=30 градусов, угол ACB=90 градусов. Так как угол CAB = 30 градусов, угол BAC будет равен 60 градусов, так как треугольник является прямоугольным.
По теореме синусов:
AC/sin60 = AB/sin30
AC/sin60 = 5/sin30
AC = 5sin60/sin30
AC = 5sqrt(3)
Ответ: AC = 5*sqrt(3) см.