В окружности радиус которой равен 12 см проведена хорда ef=120 мм в точке eпроведена касательная eg к окружности найдите острый угол между хордой и касательной

13 Окт 2019 в 17:42
232 +1
0
Ответы
1

Для нахождения острого угла между хордой и касательной в данной задаче, необходимо воспользоваться теоремой о касательной и хорде.

Согласно этой теореме, угол между хордой и касательной, проведенной к окружности из точки касания, равен половине угла, образованного этой хордой и дугой окружности.

Так как даны длина хорды ef = 120 мм и длина радиуса окружности r = 12 см, то длина дуги окружности между точками e и f будет равна 2r = 24 см.

Из этого следует, что угол между хордой и касательной равен половине угла в центре окружности, образованного хордой и радиусом:

Угол в центре = 2 arcsin(ef / 2r) = 2 arcsin(120 / 240) = 2 arcsin(0.5) = 2 30 = 60 градусов.

Острый угол между хордой и касательной будет равен половине этого угла, то есть 30 градусов.

19 Апр 2024 в 11:32
Не можешь разобраться в этой теме?
Обратись за помощью к экспертам
Название заказа не должно быть пустым
Введите email
Бесплатные доработки
Гарантированные бесплатные доработки
Быстрое выполнение
Быстрое выполнение от 2 часов
Проверка работы
Проверка работы на плагиат
Интересные статьи из справочника
Поможем написать учебную работу
Название заказа не должно быть пустым
Введите email
Доверьте свою работу экспертам
Разместите заказ
Наша система отправит ваш заказ на оценку 96 340 авторам
Первые отклики появятся уже в течение 10 минут
Прямой эфир