В треугольнике ABC углы A и C пересекаются в точке S, через точку S проведена прямая MK параллельная AC(точка M на стороне AB, а точка K на стороне BC. Найдите MK, если сумма AM и KC= 15 дм

7 Ноя 2019 в 19:48
181 +1
0
Ответы
1

Поскольку прямая MK параллельна стороне AC, угол A равен углу K, а угол C равен углу M. Таким образом, треугольники ASK и CSK подобны треугольникам ACB и ABC, поскольку у них соответствующие углы равны.

Таким образом, мы можем записать пропорции:

AS/SK = AC/CK
AS/(15-AS) = AC/AS
AS^2 = 15*(15-AS)
AS^2 = 225 - 15AS
AS^2 + 15AS - 225 = 0
(AS + 25)(AS - 10) = 0

Отсюда, AS = 10 дм, так как длина стороны не может быть отрицательной. Теперь, поскольку сумма AM и KC равна 15 дм, AM = 5 дм и KC = 10 дм.

Из прямоугольного треугольника ASM:

MS = AStg A
MS = 10tg A
MS = 8,66 дм

Из подобных треугольников можно записать пропорцию и найти MK:

MK/MS = CK/CS
MK/8,66 = 10/15
MK = 5,77 дм

Таким образом, длина отрезка MK равна 5,77 дм.

19 Апр в 02:44
Не можешь разобраться в этой теме?
Обратись за помощью к экспертам
Название заказа не должно быть пустым
Введите email
Бесплатные доработки
Гарантированные бесплатные доработки
Быстрое выполнение
Быстрое выполнение от 2 часов
Проверка работы
Проверка работы на плагиат
Интересные статьи из справочника
Поможем написать учебную работу
Название заказа не должно быть пустым
Введите email
Доверьте свою работу экспертам
Разместите заказ
Наша система отправит ваш заказ на оценку 92 588 авторам
Первые отклики появятся уже в течение 10 минут
Прямой эфир