Периметр равнобедренного треугольника=16 см,а его оснавание=6 см.Найдите биссектрису треугольника ,проведенную к основанию. можно с рисунком и корректное решение с буквенными обозначениями

17 Ноя 2019 в 19:45
115 +1
0
Ответы
1

Для начала найдем длину боковой стороны треугольника, используя то, что он равнобедренный. Обозначим длину этой стороны как a, а основание как b.

Из условия равнобедренности треугольника знаем, что a = b. Тогда периметр выражается как P = 2a + b = 16, а основание равно b = 6.

Заменяем b в уравнении периметра:
2a + 6 = 16
2a = 10
a = 5

Теперь у нас известны все стороны треугольника: a = 5, b = 6, c = 5.

Для нахождения биссектрисы проведем высоту из вершины угла, лежащего напротив основания. Обозначим высоту как h, тогда можем разделить треугольник на два равнобедренных треугольника. По теореме Пифагора:
(6/2)^2 + h^2 = 5^2

Упрощаем уравнение:
3^2 + h^2 = 5^2
h^2 = 25 - 9
h^2 = 16
h = 4

Теперь у нас известны все стороны и высота треугольника. Найдем биссектрису с помощью формулы:
bl = 2 * (sqrt(ab - (a^2 + b^2 - c^2) / 2))

где ab - произведение всех сторон треугольника, a, b, c - стороны треугольника.

bl = 2 (sqrt(5 6 11 - (5^2 + 6^2 - 5^2) / 2))
bl = 2 (sqrt(330 - (25 + 36 - 25) / 2))
bl = 2 (sqrt(330 - 68 / 2))
bl = 2 (sqrt(329))

Итак, биссектриса треугольника, проведенная к основанию, равна sqrt(329) см.

19 Апр в 01:40
Не можешь разобраться в этой теме?
Обратись за помощью к экспертам
Название заказа не должно быть пустым
Введите email
Бесплатные доработки
Гарантированные бесплатные доработки
Быстрое выполнение
Быстрое выполнение от 2 часов
Проверка работы
Проверка работы на плагиат
Интересные статьи из справочника
Поможем написать учебную работу
Название заказа не должно быть пустым
Введите email
Доверьте свою работу экспертам
Разместите заказ
Наша система отправит ваш заказ на оценку 92 648 авторам
Первые отклики появятся уже в течение 10 минут
Прямой эфир