9) 2cos(2°) = 2cos²(1°) = 2(1 - sin²(1°)) ≈ 1.9985
10) sin(a) + a + cos(a) + 2sin(a)cos(a) = sin(a) + cos(a) + sin(2a) = 2sin(1.5a)cos(0.5a) ≈ 1.99
11) tg(a)(2cos(a) + sin(a) - 1) = tg(a)(1 + sin(a)) ≈ 1.99
12) cos(a) + tg(a)cos(a) = cos(a) + sin(a) ≈ 1 + 1 = 2
13) tg(a) - sin(a)tg(a) = tg(a)(1 - sin(a)) ≈ 1.99
14) (1 - sin(a))(1 + sin(a)) = 1 - sin²(a) = cos²(a) ≈ 0.995
15) tg(5°)tg(25°)tg(45°)tg(65°)tg(85°) = 1 (since the product of tangents of consecutive complementary angles is always 1)
9) 2cos(2°) = 2cos²(1°) = 2(1 - sin²(1°)) ≈ 1.9985
10) sin(a) + a + cos(a) + 2sin(a)cos(a) = sin(a) + cos(a) + sin(2a) = 2sin(1.5a)cos(0.5a) ≈ 1.99
11) tg(a)(2cos(a) + sin(a) - 1) = tg(a)(1 + sin(a)) ≈ 1.99
12) cos(a) + tg(a)cos(a) = cos(a) + sin(a) ≈ 1 + 1 = 2
13) tg(a) - sin(a)tg(a) = tg(a)(1 - sin(a)) ≈ 1.99
14) (1 - sin(a))(1 + sin(a)) = 1 - sin²(a) = cos²(a) ≈ 0.995
15) tg(5°)tg(25°)tg(45°)tg(65°)tg(85°) = 1 (since the product of tangents of consecutive complementary angles is always 1)