Для начала найдем длину стороны АС по теореме синусов:
sin(60°) / AC = sin(45°) / 2√3
sin(60°) = √3/2, sin(45°) = √2/2
√3/2 / AC = √2/2 / 2√3
√3/2 / AC = √2 / 4
AC = (2√3 * √3) / 2 = 3
Теперь найдем длину стороны AB по теореме синусов:
sin(45°)/AB = sin(60°)/2√3
√2/2 / AB = √3/2 / 2√3
√2 / 2AB = 1 / 2
AB = √2 * 2 = 2√2
Итак, длина стороны AB равна 2√2 см.
Для начала найдем длину стороны АС по теореме синусов:
sin(60°) / AC = sin(45°) / 2√3
sin(60°) = √3/2, sin(45°) = √2/2
√3/2 / AC = √2/2 / 2√3
√3/2 / AC = √2 / 4
AC = (2√3 * √3) / 2 = 3
Теперь найдем длину стороны AB по теореме синусов:
sin(45°)/AB = sin(60°)/2√3
√2/2 / AB = √3/2 / 2√3
√2 / 2AB = 1 / 2
AB = √2 * 2 = 2√2
Итак, длина стороны AB равна 2√2 см.