Расписать решение задач 1.Объем шара радиуса R равен V. Найдите: объем шара радиуса: а) 2R; б) 0,5 R. (Ответ: а) 32/3ПR; б) 1/6 ПR3) 2 Чему равен объем шарового сектора, если радиус окружности основания равен 60 см, а радиус шара – 75 см? (Ответ: 112,5П см3, или 450П см3). 3 На расстоянии 12 см от центра шара проведено сечение, радиус которого равен 9 см. Найдите объем шара и площадь его поверхности. Ответ: 4500 П см3, 900П см2;
а) Объем шара радиуса R: V = 4/3 Pi R^3
Объем шара радиуса 2R: V' = 4/3 Pi (2R)^3 = 4/3 Pi 8R^3 = 32/3 Pi R^3
б) Объем шара радиуса R: V = 4/3 Pi R^3
Объем шара радиуса 0,5R: V' = 4/3 Pi (0,5R)^3 = 4/3 Pi (0,125R)^3 = 1/6 Pi R^3
Объем шарового сектора можно найти по формуле: V = 2/3 Pi R^3, где R - радиус шара.
Подставим R = 75 см: V = 2/3 Pi 75^3 = 112,5П см3, или 450П см3.
Объем шара можно найти по формуле: V = 4/3 Pi R^3, где R - радиус шара.
Подставим R = 12 см: V = 4/3 Pi 12^3 = 4500 П см3.
Площадь поверхности шара можно найти по формуле: S = 4 Pi R^2, где R - радиус шара.
Подставим R = 12 см: S = 4 Pi 12^2 = 900П см2.