В треугольнике ABC проведена биссектриса AL. Точки E и D отмечены на отрезках AB и BL соответственно так, что DL=LC, ED∥AC. Найдите длину отрезка ED, если известно, что AE=30, AC=24.
Из условия DL=LC следует, что AL=2DL, то есть AL=2x, DL=x, LC=x. Далее, из треугольников ABL и ACL следует, что AE/EC=AB/BC, то есть 30/x=(24-x)/2x. Решив это уравнение, найдем x=6.
Теперь заметим, что треугольники ACL и AED подобны (по двум углам), поэтому AE/AC=ED/LC, то есть 30/24=ED/6. Решая это уравнение, найдем ED=5.
Из условия DL=LC следует, что AL=2DL, то есть AL=2x, DL=x, LC=x. Далее, из треугольников ABL и ACL следует, что AE/EC=AB/BC, то есть 30/x=(24-x)/2x. Решив это уравнение, найдем x=6.
Теперь заметим, что треугольники ACL и AED подобны (по двум углам), поэтому AE/AC=ED/LC, то есть 30/24=ED/6. Решая это уравнение, найдем ED=5.
Итак, длина отрезка ED составляет 5.