Докажите тождество по алгебре (sin a +cos a) ²+(sin a-cos a) ²-cos a ²/2=tg a ;cos a ;sin a-?

28 Ноя 2020 в 19:41
173 +1
0
Ответы
1

Доказательство:

Начнем с левой части уравнения:

(sin a + cos a)² + (sin a - cos a)² - cos a²/2

Раскрываем скобки:

(sin²a + 2sin a cos a + cos²a) + (sin²a - 2sin a cos a + cos²a) - cos²a/2

Упрощаем выражение:

2(sin²a + cos²a) - cos²a/2

Так как sin²a + cos²a = 1, получаем:

2*1 - cos²a/2 = 2 - cos²a/2 = 2 - (1 - sin²a)/2 = 2 - 1/2 + sin²a/2 = 3/2 + sin²a/2

Теперь рассмотрим правую часть уравнения:

tg a = sin a / cos a

cos a tg a = sin a
cos a sin a / cos a = sin a
sin a = sin a

Поэтому левая часть уравнения равна правой:

2 - cos²a/2 = 3/2 + sin²a/2

Таким образом, тождество доказано.

17 Апр в 21:45
Не можешь разобраться в этой теме?
Обратись за помощью к экспертам
Название заказа не должно быть пустым
Введите email
Бесплатные доработки
Гарантированные бесплатные доработки
Быстрое выполнение
Быстрое выполнение от 2 часов
Проверка работы
Проверка работы на плагиат
Интересные статьи из справочника
Поможем написать учебную работу
Название заказа не должно быть пустым
Введите email
Доверьте свою работу экспертам
Разместите заказ
Наша система отправит ваш заказ на оценку 91 947 авторам
Первые отклики появятся уже в течение 10 минут
Прямой эфир