1) (Tg(7π/24) - tg(π/8)) / (1 + tg(7π/24) * tg(π/8))
Используя тригонометрические тождества, получим:
tg(7π/24) = tg(π/3 - π/8) = (tg(π/3) - tg(π/8)) / (1 + tg(π/3) tg(π/8)) = (√3 - tg(π/8)) / (1 + √3 tg(π/8))
tg(π/8) = tg(π/6 - π/24) = (tg(π/6) - tg(π/24)) / (1 + tg(π/6) tg(π/24)) = (√3 - 0.5) / (1 + √3 0.5) = (√3 - 0.5) / (1 + √3 * 0.5)
Теперь подставляем полученные значения в исходное выражение и упрощаем:
((√3 - (√3 - 0.5)) / (1 + √3 * (√3 - 0.5))) / (1 + (√3 - 0.5)(√3 - 0.5))
(0.5 / (1 + 1 - 0.75)) / (1 + 0.5 * 0.5)(0.5 / 1.25) / (1 + 0.25)0.4 / 1.250.32
Ответ: 0.32
2) (Tg(π/20) + tg(π/5)) / (1 - tg(π/20) * tg(π/5))
tg(π/20) = tg(π/4 - π/20) = (tg(π/4) - tg(π/20)) / (1 + tg(π/4) tg(π/20)) = (1 - tg(π/20)) / (1 + 1 tg(π/20)) = (1 - tg(π/20)) / (1 + tg(π/20))
tg(π/5) = tg(π/4 + π/20) = (tg(π/4) + tg(π/20)) / (1 - tg(π/4) tg(π/20) = (1 + tg(π/20)) / (1 - 1 tg(π/20)) = (1 + tg(π/20)) / (1 - tg(π/20))
((1 - tg(π/20) + 1 + tg(π/20)) / (1 + tg(π/20))) / (1 - (1 - tg(π/20))(1 + tg(π/20)))
(2 / (1 + tg(π/20))) / (1 - (1 - tg(π/20))(1 + tg(π/20)))(2 / (1 + tg(π/20))) / (1 - 1 + tg^2(π/20))(2 / (1 + tg(π/20))) / tg^2(π/20)
Ответ: (2 / (1 + tg(π/20))) / tg^2(π/20)
1) (Tg(7π/24) - tg(π/8)) / (1 + tg(7π/24) * tg(π/8))
Используя тригонометрические тождества, получим:
tg(7π/24) = tg(π/3 - π/8) = (tg(π/3) - tg(π/8)) / (1 + tg(π/3) tg(π/8)) = (√3 - tg(π/8)) / (1 + √3 tg(π/8))
tg(π/8) = tg(π/6 - π/24) = (tg(π/6) - tg(π/24)) / (1 + tg(π/6) tg(π/24)) = (√3 - 0.5) / (1 + √3 0.5) = (√3 - 0.5) / (1 + √3 * 0.5)
Теперь подставляем полученные значения в исходное выражение и упрощаем:
((√3 - (√3 - 0.5)) / (1 + √3 * (√3 - 0.5))) / (1 + (√3 - 0.5)(√3 - 0.5))
(0.5 / (1 + 1 - 0.75)) / (1 + 0.5 * 0.5)
(0.5 / 1.25) / (1 + 0.25)
0.4 / 1.25
0.32
Ответ: 0.32
2) (Tg(π/20) + tg(π/5)) / (1 - tg(π/20) * tg(π/5))
Используя тригонометрические тождества, получим:
tg(π/20) = tg(π/4 - π/20) = (tg(π/4) - tg(π/20)) / (1 + tg(π/4) tg(π/20)) = (1 - tg(π/20)) / (1 + 1 tg(π/20)) = (1 - tg(π/20)) / (1 + tg(π/20))
tg(π/5) = tg(π/4 + π/20) = (tg(π/4) + tg(π/20)) / (1 - tg(π/4) tg(π/20) = (1 + tg(π/20)) / (1 - 1 tg(π/20)) = (1 + tg(π/20)) / (1 - tg(π/20))
Теперь подставляем полученные значения в исходное выражение и упрощаем:
((1 - tg(π/20) + 1 + tg(π/20)) / (1 + tg(π/20))) / (1 - (1 - tg(π/20))(1 + tg(π/20)))
(2 / (1 + tg(π/20))) / (1 - (1 - tg(π/20))(1 + tg(π/20)))
(2 / (1 + tg(π/20))) / (1 - 1 + tg^2(π/20))
(2 / (1 + tg(π/20))) / tg^2(π/20)
Ответ: (2 / (1 + tg(π/20))) / tg^2(π/20)