To simplify this equation, we will first distribute the numbers outside the parentheses to the terms inside the parentheses:
3·4·(2·5к + 3) + 4·(2 - 2·7к) = 1,4 - 1,5к12·(10к + 3) + 4·(2 - 14к) = 1,4 - 1,5к
Next, let's simplify the terms inside the parentheses to get:
120к + 36 + 8 - 56к = 1,4 - 1,5к
Combining like terms, we get:
64к + 44 = 1,4 - 1,5к
Now, let's isolate the variable 'к' on one side of the equation.
Adding 1,5к to both sides:
64к + 1,5к + 44 = 1,4
Combining like terms:
65,5к + 44 = 1,4
Subtracting 44 from both sides:
65,5к = 1,4 - 4465,5к = 42
Now, we will divide by 65,5 on both sides to solve for 'к':
к = 42 / 65,5к = 0,6423
Therefore, the solution to the equation is к = 0,6423.
To simplify this equation, we will first distribute the numbers outside the parentheses to the terms inside the parentheses:
3·4·(2·5к + 3) + 4·(2 - 2·7к) = 1,4 - 1,5к
12·(10к + 3) + 4·(2 - 14к) = 1,4 - 1,5к
Next, let's simplify the terms inside the parentheses to get:
120к + 36 + 8 - 56к = 1,4 - 1,5к
Combining like terms, we get:
64к + 44 = 1,4 - 1,5к
Now, let's isolate the variable 'к' on one side of the equation.
Adding 1,5к to both sides:
64к + 1,5к + 44 = 1,4
Combining like terms:
65,5к + 44 = 1,4
Subtracting 44 from both sides:
65,5к = 1,4 - 44
65,5к = 42
Now, we will divide by 65,5 on both sides to solve for 'к':
к = 42 / 65,5
к = 0,6423
Therefore, the solution to the equation is к = 0,6423.