Expanding the left side of the inequality:(3x-4)(7x+5)= 3x(7x) + 3x(5) - 4(7x) - 4(5)= 21x^2 + 15x - 28x - 20= 21x^2 - 13x - 20
Expanding the right side of the inequality:(3x-4)(7x-5)= 3x(7x) + 3x(-5) - 4(7x) - 4(-5)= 21x^2 - 15x - 28x + 20= 21x^2 - 43x + 20
So, the inequality becomes:21x^2 - 13x - 20 ≥ 21x^2 - 43x + 20
Now, let's simplify the equation:21x^2 - 13x - 20 ≥ 21x^2 - 43x + 200 ≥ -30x + 4030x ≥ 40x ≥ 4/3
Therefore, the solution to the inequality is x ≥ 4/3.
Expanding the left side of the inequality:
(3x-4)(7x+5)
= 3x(7x) + 3x(5) - 4(7x) - 4(5)
= 21x^2 + 15x - 28x - 20
= 21x^2 - 13x - 20
Expanding the right side of the inequality:
(3x-4)(7x-5)
= 3x(7x) + 3x(-5) - 4(7x) - 4(-5)
= 21x^2 - 15x - 28x + 20
= 21x^2 - 43x + 20
So, the inequality becomes:
21x^2 - 13x - 20 ≥ 21x^2 - 43x + 20
Now, let's simplify the equation:
21x^2 - 13x - 20 ≥ 21x^2 - 43x + 20
0 ≥ -30x + 40
30x ≥ 40
x ≥ 4/3
Therefore, the solution to the inequality is x ≥ 4/3.