To simplify this expression, we'll first find a common denominator for the two fractions:
(\frac{\sqrt{6}+2}{\sqrt{6}-2} - \frac{\sqrt{6}-2}{\sqrt{6}+2})
Multiplying the denominators together, we get:
((\sqrt{6} - 2)(\sqrt{6} + 2) = 6 - 4 = 2)
So, we rewrite the fractions with the common denominator of 2:
(\frac{(\sqrt{6}+2)^2 - (\sqrt{6}-2)^2}{(\sqrt{6}+2)(\sqrt{6}-2)})
Expanding the squares in the numerator, we get:
(\frac{6 + 4\sqrt{6} + 4 - 6 + 4\sqrt{6} - 4}{2})
Simplify the numerator:
(\frac{8\sqrt{6}}{2})
Finally, simplify the expression:
(4\sqrt{6})
To simplify this expression, we'll first find a common denominator for the two fractions:
(\frac{\sqrt{6}+2}{\sqrt{6}-2} - \frac{\sqrt{6}-2}{\sqrt{6}+2})
Multiplying the denominators together, we get:
((\sqrt{6} - 2)(\sqrt{6} + 2) = 6 - 4 = 2)
So, we rewrite the fractions with the common denominator of 2:
(\frac{(\sqrt{6}+2)^2 - (\sqrt{6}-2)^2}{(\sqrt{6}+2)(\sqrt{6}-2)})
Expanding the squares in the numerator, we get:
(\frac{6 + 4\sqrt{6} + 4 - 6 + 4\sqrt{6} - 4}{2})
Simplify the numerator:
(\frac{8\sqrt{6}}{2})
Finally, simplify the expression:
(4\sqrt{6})