Expanding the terms, we get:
(6x^3 - 1)^2 = (6x^3 - 1)(6x^3 - 1) = 36x^6 - 12x^3 - 12x^3 + 1 = 36x^6 - 24x^3 + 1
(4x^3 - 1)(9x^3 + 5) = 36x^6 + 20x^3 - 9x^3 - 5 = 36x^6 + 11x^3 - 5
And the equation becomes:
36x^6 - 24x^3 + 1 - (36x^6 + 11x^3 - 5) + 23x^3 = 6
Simplifying further, we get:
-24x^3 + 1 - 36x^6 - 11x^3 + 5 + 23x^3 = 6
-12x^3 - 36x^6 + 6 = 6
Combining the terms:
-12x^3 - 36x^6 = 0
Therefore, the final equation is:
12x^3 + 36x^6 = 0
Expanding the terms, we get:
(6x^3 - 1)^2 = (6x^3 - 1)(6x^3 - 1) = 36x^6 - 12x^3 - 12x^3 + 1 = 36x^6 - 24x^3 + 1
(4x^3 - 1)(9x^3 + 5) = 36x^6 + 20x^3 - 9x^3 - 5 = 36x^6 + 11x^3 - 5
And the equation becomes:
36x^6 - 24x^3 + 1 - (36x^6 + 11x^3 - 5) + 23x^3 = 6
Simplifying further, we get:
-24x^3 + 1 - 36x^6 - 11x^3 + 5 + 23x^3 = 6
-12x^3 - 36x^6 + 6 = 6
Combining the terms:
-12x^3 - 36x^6 = 0
Therefore, the final equation is:
12x^3 + 36x^6 = 0