First, we will expand the expression:
(a+2)^2 = (a+2)(a+2) = a^2 + 2a + 2a + 4 = a^2 + 4a + 4
(3a-4)(4+3a) = 3a(4) + 3a(3a) - 4(4) - 4(3a) = 12a + 9a^2 - 16 - 12a = 9a^2 - 16
Now we can substitute these values back into the original expression:
(a+2)^2 - (3a-4)(4+3a)= (a^2 + 4a + 4) - (9a^2 - 16)= a^2 + 4a + 4 - 9a^2 + 16= -8a^2 + 4a + 20
Therefore, the simplified expression is -8a^2 + 4a + 20.
First, we will expand the expression:
(a+2)^2 = (a+2)(a+2) = a^2 + 2a + 2a + 4 = a^2 + 4a + 4
(3a-4)(4+3a) = 3a(4) + 3a(3a) - 4(4) - 4(3a) = 12a + 9a^2 - 16 - 12a = 9a^2 - 16
Now we can substitute these values back into the original expression:
(a+2)^2 - (3a-4)(4+3a)
= (a^2 + 4a + 4) - (9a^2 - 16)
= a^2 + 4a + 4 - 9a^2 + 16
= -8a^2 + 4a + 20
Therefore, the simplified expression is -8a^2 + 4a + 20.