To simplify the expression, we can use the trigonometric identities:
Substitute these identities into the expression:
cos(α-β) - 2sinαsinβ / 2sinαcosβ - sin(α-β)= (cosαcosβ + sinαsinβ) - 2sinαsinβ / 2sinαcosβ - (sinαcosβ - cosαsinβ)= cosαcosβ + sinαsinβ - 2sinαsinβ / 2sinαcosβ - sinαcosβ + cosαsinβ= cosαcosβ + sinαsinβ - 2sinαsinβ / 2sinαcosβ - sinαcosβ + cosαsinβ
Now, simplify each term:= cosαcosβ + sinαsinβ - 2sinαsinβ / 2sinαcosβ - sinαcosβ + cosαsinβ= cosαcosβ + sinαsinβ - 2sinαsinβ / 2sinαcosβ - sinαcosβ + cosαsinβ= cosαcosβ - sinαsinβ / 2sinαcosβ - sinαcosβ + cosαsinβ
Therefore, the simplified expression is:
(cosαcosβ - sinαsinβ) / (2sinαcosβ - sinαcosβ) + cosαsinβ= cos(α + β) + cosαsinβ
This is the simplified form of the given expression.
To simplify the expression, we can use the trigonometric identities:
cos(α-β) = cosαcosβ + sinαsinβsin(α-β) = sinαcosβ - cosαsinβSubstitute these identities into the expression:
cos(α-β) - 2sinαsinβ / 2sinαcosβ - sin(α-β)
= (cosαcosβ + sinαsinβ) - 2sinαsinβ / 2sinαcosβ - (sinαcosβ - cosαsinβ)
= cosαcosβ + sinαsinβ - 2sinαsinβ / 2sinαcosβ - sinαcosβ + cosαsinβ
= cosαcosβ + sinαsinβ - 2sinαsinβ / 2sinαcosβ - sinαcosβ + cosαsinβ
Now, simplify each term:
= cosαcosβ + sinαsinβ - 2sinαsinβ / 2sinαcosβ - sinαcosβ + cosαsinβ
= cosαcosβ + sinαsinβ - 2sinαsinβ / 2sinαcosβ - sinαcosβ + cosαsinβ
= cosαcosβ - sinαsinβ / 2sinαcosβ - sinαcosβ + cosαsinβ
Therefore, the simplified expression is:
(cosαcosβ - sinαsinβ) / (2sinαcosβ - sinαcosβ) + cosαsinβ
= cos(α + β) + cosαsinβ
This is the simplified form of the given expression.