1) Если дискриминант квадратного трехчлена равен 0, то у него один корень. Если дискриминант больше 0, то у него два различных корня. Таким образом, квадратный трехчлен, имеющий различные корни, должен иметь дискриминант больше 0. 2) Для первого квадратного трехчлена d = 1 - 429 = 1 - 72 = -71, d < 0, поэтому у него нет корней. 3) Для второго квадратного трехчлена d = 100 - 4125 = 100 - 100 = 0, поэтому у него один корень. 4) Для третьего квадратного трехчлена d = 4 - 4(-4)6 = 4 + 96 = 100, d > 0, поэтому у него два различных корня.
Таким образом, только третий квадратный трехчлен (-4x^2 + 2x + 6) имеет различные корни.
1) Если дискриминант квадратного трехчлена равен 0, то у него один корень. Если дискриминант больше 0, то у него два различных корня. Таким образом, квадратный трехчлен, имеющий различные корни, должен иметь дискриминант больше 0.
2) Для первого квадратного трехчлена d = 1 - 429 = 1 - 72 = -71, d < 0, поэтому у него нет корней.
3) Для второго квадратного трехчлена d = 100 - 4125 = 100 - 100 = 0, поэтому у него один корень.
4) Для третьего квадратного трехчлена d = 4 - 4(-4)6 = 4 + 96 = 100, d > 0, поэтому у него два различных корня.
Таким образом, только третий квадратный трехчлен (-4x^2 + 2x + 6) имеет различные корни.