При каких значениях параметра корни уравнения x²+(2a+1)x+a²-4a+3=0 являются положительными числами?

29 Сен 2021 в 19:40
41 +1
0
Ответы
1

Для того чтобы корни уравнения были положительными, необходимо, чтобы дискриминант был положительным, то есть D = (2a + 1)² - 4(a² - 4a + 3) > 0.

Раскрыв скобки и преобразовав выражение получаем:

4a² + 4a + 1 - 4a² + 16a - 12 > 0,

Упростим:

20a - 11 > 0,

20a > 11,

a > 11/20.

Таким образом, при значениях параметра a > 11/20 корни уравнения x² + (2a+1)x + a² - 4a + 3 = 0 будут положительными числами.

17 Апр в 10:51
Не можешь разобраться в этой теме?
Обратись за помощью к экспертам
Название заказа не должно быть пустым
Введите email
Бесплатные доработки
Гарантированные бесплатные доработки
Быстрое выполнение
Быстрое выполнение от 2 часов
Проверка работы
Проверка работы на плагиат
Интересные статьи из справочника
Поможем написать учебную работу
Название заказа не должно быть пустым
Введите email
Доверьте свою работу экспертам
Разместите заказ
Наша система отправит ваш заказ на оценку 92 588 авторам
Первые отклики появятся уже в течение 10 минут
Прямой эфир