а) y = (2x + 1)^(1/4)dy/dx = (1/4)(2x + 1)^(-3/4)2dy/dx = 1/(2*(2x + 1)^(3/4))
б) y = ln(3x - 5)e^(-2x)dy/dx = (1/(3x - 5)) (-e^(-2x)) - (ln(3x - 5)) * (-2e^(-2x))dy/dx = -e^(-2x)/(3x - 5) + 2(ln(3x - 5)e^(-2x))
в) y = (2x + 5)/(1 + sin(2x))dy/dx = (cos(2x)(2) - (2x + 5)(cos(2x)))/(1 + sin(2x))^2dy/dx = (2cos(2x) - 2x - 5cos(2x))/(1 + sin(2x))^2
г) y = arctan(x^3)dy/dx = 3x^2/(1 + x^6)
а) y = (2x + 1)^(1/4)
dy/dx = (1/4)(2x + 1)^(-3/4)2
dy/dx = 1/(2*(2x + 1)^(3/4))
б) y = ln(3x - 5)e^(-2x)
dy/dx = (1/(3x - 5)) (-e^(-2x)) - (ln(3x - 5)) * (-2e^(-2x))
dy/dx = -e^(-2x)/(3x - 5) + 2(ln(3x - 5)e^(-2x))
в) y = (2x + 5)/(1 + sin(2x))
dy/dx = (cos(2x)(2) - (2x + 5)(cos(2x)))/(1 + sin(2x))^2
dy/dx = (2cos(2x) - 2x - 5cos(2x))/(1 + sin(2x))^2
г) y = arctan(x^3)
dy/dx = 3x^2/(1 + x^6)