Expanding each term, we get:
(х+1)(х-1)(х-2) = х^3 - 2х^2 - х + 2(х^2 - 7х)(х-4) = х^3 - 4х^2 - 7х^2 + 28х2 + 2х = 2х + 2
Now, we can simplify the given expression by subtracting the second term from the first term and then simplifying further:
(х+1)(х-1)(х-2) - (х^2 - 7х)(х-4) - (2 + 2х)= (х^3 - 2х^2 - х + 2) - (х^3 - 4х^2 - 7х^2 + 28х) - (2х + 2)= х^3 - 2х^2 - х + 2 - х^3 + 4х^2 + 7х^2 - 28х - 2х - 2= -х^2 - 24х - 2
Therefore, the final simplified expression is -х^2 - 24х - 2.
Expanding each term, we get:
(х+1)(х-1)(х-2) = х^3 - 2х^2 - х + 2
(х^2 - 7х)(х-4) = х^3 - 4х^2 - 7х^2 + 28х
2 + 2х = 2х + 2
Now, we can simplify the given expression by subtracting the second term from the first term and then simplifying further:
(х+1)(х-1)(х-2) - (х^2 - 7х)(х-4) - (2 + 2х)
= (х^3 - 2х^2 - х + 2) - (х^3 - 4х^2 - 7х^2 + 28х) - (2х + 2)
= х^3 - 2х^2 - х + 2 - х^3 + 4х^2 + 7х^2 - 28х - 2х - 2
= -х^2 - 24х - 2
Therefore, the final simplified expression is -х^2 - 24х - 2.