To simplify the expression ((x-3y)²-(x+3y)²)/xy, we first expand the squares in the numerator:
(x-3y)² = (x-3y)(x-3y) = x² - 3xy - 3xy + 9y² = x² - 6xy + 9y²(x+3y)² = (x+3y)(x+3y) = x² + 3xy + 3xy + 9y² = x² + 6xy + 9y²
Now we can substitute these back into the expression:
((x-3y)²-(x+3y)²)/xy = (x² - 6xy + 9y² - x² - 6xy - 9y²)/xy= (-12xy)/xy= -12
Therefore, the simplified form of the expression is -12.
To simplify the expression ((x-3y)²-(x+3y)²)/xy, we first expand the squares in the numerator:
(x-3y)² = (x-3y)(x-3y) = x² - 3xy - 3xy + 9y² = x² - 6xy + 9y²
(x+3y)² = (x+3y)(x+3y) = x² + 3xy + 3xy + 9y² = x² + 6xy + 9y²
Now we can substitute these back into the expression:
((x-3y)²-(x+3y)²)/xy = (x² - 6xy + 9y² - x² - 6xy - 9y²)/xy
= (-12xy)/xy
= -12
Therefore, the simplified form of the expression is -12.