В соревнованиях по преданию печенья участвуют Маша и Миша. Маша съедает за минуту на 2 штуки меньше чем Миша. Каждый должен съесть по 80 штук. Сколько печенья съедает за одну минуту Маша, если соревнование она заканчивает на 2 минуты позже, чем Миша?
x = (2 ± √(2^2 - 4180)) / 2*1 x = (2 ± √(4 - 320)) / 2 x = (2 ± √(-316)) / 2
Так как дискриминант меньше нуля, решения в рамках данной задачи у нас нет. Поэтому нет однозначного ответа на вопрос, сколько печенек съедает за одну минуту Маша.
Пусть Миша съедает за минуту х печенек, тогда Маша съедает за минуту (х-2) печенек.
Если каждый должен съесть по 80 печенек, то Миша закончит съедать их через 80/х минут, а Маша через 80/(х-2) минут.
Так как Миша закончит на 2 минуты раньше Маши, получаем уравнение:
80/х = 80/(х-2) + 2
Упростим:
80/х = 80/(х-2) + 2
80/х = 80/(х-2) + 2(х-2)/(х-2)
80/х = (80 + 2х - 4)/(х-2)
80/х = (2х + 76)/(х-2)
80/х(x-2) = 2х + 76
80(x-2) = 2х(x-2) + 76x
80x - 160 = 2x^2 - 4x + 76x
0 = 2x^2 -80x + 76x + 160
0 = 2x^2 -4x + 160
0 = x^2 - 2x + 80
Решив квадратное уравнение, получаем:
x = (2 ± √(2^2 - 4180)) / 2*1
x = (2 ± √(4 - 320)) / 2
x = (2 ± √(-316)) / 2
Так как дискриминант меньше нуля, решения в рамках данной задачи у нас нет. Поэтому нет однозначного ответа на вопрос, сколько печенек съедает за одну минуту Маша.