(sin^2x+cos^2x)(sinx-cosx) = sinx(sinx-cosx) + cosx(sinx-cosx) = sin^2x - sinxcosx + cos^2x - sinxcosx = sin^2x + cos^2x - 2sinxcosx= 1 - 2sinxcosx
Therefore, the equation becomes:
1 - 2sinxcosx = 4sin^3x
Rearranging and simplifying:
4sin^3x + 2sinxcosx - 1 = 0
This is a cubic equation in terms of sinx, which can be solved using algebraic methods or numerical methods.
(sin^2x+cos^2x)(sinx-cosx) = sinx(sinx-cosx) + cosx(sinx-cosx) = sin^2x - sinxcosx + cos^2x - sinxcosx = sin^2x + cos^2x - 2sinxcosx
= 1 - 2sinxcosx
Therefore, the equation becomes:
1 - 2sinxcosx = 4sin^3x
Rearranging and simplifying:
4sin^3x + 2sinxcosx - 1 = 0
This is a cubic equation in terms of sinx, which can be solved using algebraic methods or numerical methods.