Прямая MN, параллельная стороне AB треугольника ABC Прямая MN, параллельная стороне AB треугольника ABC, пересекает стороны AC и BC в точках M и N соответственно. Отрезок AM в 3 раза меньше отрезка CM, MN=21. Найди AB

7 Апр 2022 в 19:41
58 +1
0
Ответы
1

Пусть отрезок AM = x, тогда отрезок CM = 3x.

Из условия, MN = 21, следует, что AN + NC = MN = 21. Так как MN параллельна AB, то сегменты поперечной AB пропорциональны сторонам треугольника. То есть AN/AM=CN/CM, следовательно, AN/3x=CN/x и AN + 3AN = 21.

AN = 3, тогда NC = 18. Значит, AC = AN + NC = 21.

Так как MN параллельна AB, то MN = k*AB, где k - коэффициент пропорциональности. AB = MN/k = 21/k. Найдем k из треугольника ABC:

AB/AC=BM/MC => AB/21=x/(3x) => AB/21=1/3 => AB = 21/3 = 7.

Ответ: AB = 7.

16 Апр 2024 в 18:51
Не можешь разобраться в этой теме?
Обратись за помощью к экспертам
Название заказа не должно быть пустым
Введите email
Бесплатные доработки
Гарантированные бесплатные доработки
Быстрое выполнение
Быстрое выполнение от 2 часов
Проверка работы
Проверка работы на плагиат
Интересные статьи из справочника
Поможем написать учебную работу
Название заказа не должно быть пустым
Введите email
Доверьте свою работу экспертам
Разместите заказ
Наша система отправит ваш заказ на оценку 96 157 авторам
Первые отклики появятся уже в течение 10 минут
Прямой эфир