Найдите точку максимума функции y=(x+3)^2 * e^(15-x)

8 Мая 2022 в 19:40
450 +1
0
Ответы
1

Для нахождения точки максимума функции необходимо найти производную функции, приравнять её к нулю и решить полученное уравнение.

Сначала найдем производную функции y:
y'(x) = [(x + 3)^2 e^(15-x)]' = [e^(15-x) (2(x + 3) + (x + 3)^2 (-1))] = e^(15-x) (2(x + 3) - (x + 3)^2)

Теперь приравняем производную к нулю и найдем точку максимума:
e^(15-x) * (2(x + 3) - (x + 3)^2) = 0
2(x + 3) - (x + 3)^2 = 0
2(x + 3) = (x + 3)^2
2 = x + 3
x = -1

Таким образом, точка x = -1 соответствует максимуму функции y=(x+3)^2 e^(15-x). Для нахождения значения функции в этой точке, подставим x = -1 в исходное выражение:
y = (-1 + 3)^2 e^(15-(-1))
y = 2^2 e^16
y = 4 e^16

Итак, точка максимума функции y=(x+3)^2 e^(15-x) равна (-1, 4 e^16).

16 Апр в 18:36
Не можешь разобраться в этой теме?
Обратись за помощью к экспертам
Название заказа не должно быть пустым
Введите email
Бесплатные доработки
Гарантированные бесплатные доработки
Быстрое выполнение
Быстрое выполнение от 2 часов
Проверка работы
Проверка работы на плагиат
Интересные статьи из справочника
Поможем написать учебную работу
Название заказа не должно быть пустым
Введите email
Доверьте свою работу экспертам
Разместите заказ
Наша система отправит ваш заказ на оценку 92 324 авторам
Первые отклики появятся уже в течение 10 минут
Прямой эфир