В кубе точка k середина ребра aa1 точка o центр abcd найдите вектор с началом и концом в вершинах куба или данных точках равных а)1/2(C1B=C1D) б)kD1-2ka1 в)DO-CO+AA1-BC г)1/2A1C+OB1-DA

26 Мая 2022 в 19:40
520 +1
0
Ответы
1

а)
1) Вектор C1B: C1 -> B = (1, 0, 0)
2) Вектор C1D: C1 -> D = (0, 1, 0)
3) Найдем их сумму, поделим на 2 и получим искомый вектор:
(1/2)(C1B + C1D) = (1/2)((1, 0, 0) + (0, 1, 0)) = (1/2, 1/2, 0)

б)
1) Вектор kD1: k -> D1 = (1, -1, 0)
2) Вектор ka1: k -> a1 = (-1, 0, 0)
3) Подставляем значения:
kD1 - 2ka1 = (1, -1, 0) - 2(-1, 0, 0) = (1, -1, 0) - (-2, 0, 0) = (3, -1, 0)

в)
1) Вектор DO: D -> O = (1, 1, -1)
2) Вектор CO: C -> O = (1, 1, 0)
3) Вектор AA1: A -> A1 = (0, 1, 0)
4) Вектор BC: B -> C = (0, 1, 1)
Подставляем значения:
DO - CO + AA1 - BC = (1, 1, -1) - (1, 1, 0) + (0, 1, 0) - (0, 1, 1)
= (1-1, 1-1, -1-0) + (0, 1, 0) - (0, 1, 1)
= (0, 0, -1) + (0, 1, 0) - (0, 1, 1)
= (0, 0, -1) + (0, 1, 0) - (0, 1, 1)
= (0, 0, -1) + (0, 1, -1)
= (0, 1, -2)

г)
1) Вектор A1C: A1 -> C = (1, 0, 1)
2) Вектор OB1: O -> B1 = (1, -1, -1)
3) Вектор DA: D -> A = (-1, -1, 1)
Подставляем значения:
(1/2)A1C + OB1 - DA = (1/2)(1, 0, 1) + (1, -1, -1) - (-1, -1, 1)
= (1/2, 0, 1/2) + (1, -1, -1) - (-1, -1, 1)
= (1/2, 0, 1/2) + (1, -1, -1) - (-1, -1, 1)
= (1/2, 0, 1/2) + (1, -1, -1) + (1, 1, -1)
= (1/2 + 1 +1, 0 + -1 +1/2, 1/2 - 1 -1)
= (2.5, -0.5, -0.5)

16 Апр 2024 в 18:26
Не можешь разобраться в этой теме?
Обратись за помощью к экспертам
Название заказа не должно быть пустым
Введите email
Бесплатные доработки
Гарантированные бесплатные доработки
Быстрое выполнение
Быстрое выполнение от 2 часов
Проверка работы
Проверка работы на плагиат
Интересные статьи из справочника
Поможем написать учебную работу
Название заказа не должно быть пустым
Введите email
Доверьте свою работу экспертам
Разместите заказ
Наша система отправит ваш заказ на оценку 96 091 автору
Первые отклики появятся уже в течение 10 минут
Прямой эфир