y=1/2x^2; x+y-4=0 вычислить площадь фигуры ограниченной линиями решить интегралом и рисунок нужен

21 Июн 2022 в 19:40
81 +1
0
Ответы
1

Для того чтобы найти площадь фигуры, ограниченной указанными линиями, необходимо решить систему уравнений и провести график функции.

Уравнение кривой задано как y = 1/2*x^2. Подставим это уравнение во второе уравнение x + y - 4 = 0:

x + 1/2x^2 - 4 = 0
1/2x^2 + x - 4 = 0
x^2 + 2x - 8 = 0
(x + 4)(x - 2) = 0

Отсюда получаем два корня x = -4 и x = 2.

Площадь фигуры, ограниченной линиями, может быть найдена как интеграл от функции y = 1/2*x^2 на интервале от -4 до 2:

S = ∫[a, b] (y(x) - f(x)) dx
S = ∫[-4, 2] ((1/2*x^2) - (x + 4)) dx

Вычислим данный интеграл:

S = ∫[-4, 2] ((1/2x^2) - (x + 4)) dx
S = [1/6x^3 - 1/2x^2 - 4x] [-4, 2]
S = [1/6(2)^3 - 1/2(2)^2 - 42] - [1/6(-4)^3 - 1/2(-4)^2 - 4*(-4)]
S = (8/6 - 4 - 8) - (-64/6 + 8 - 16)
S = (4/3 - 12) - (-10.67 + 8 - 16)
S = -8/3 - (-18.67)
S = -8/3 + 18.67
S ≈ 6.67

Итак, площадь фигуры, ограниченной указанными линиями, равна приблизительно 6.67.

Построим график функции y = 1/2*x^2 и решения задачи:

import numpy as np
import matplotlib.pyplot as plt
x = np.linspace(-5, 3, 100)
y = 1/2*x**2
plt.plot(x, y, label='y = 1/2*x^2')
plt.axvline(x=-4, color='r', linestyle='--', label='x = -4')
plt.axvline(x=2, color='g', linestyle='--', label='x = 2')
plt.fill_between(x, y, where=((x >= -4) & (x <= 2)), color='gray', alpha=0.5)
plt.legend()
plt.grid(True)
plt.xlabel('x')
plt.ylabel('y')
plt.title('График функции y = 1/2*x^2 и ограничивающих линий')
plt.show()
16 Апр 2024 в 18:17
Не можешь разобраться в этой теме?
Обратись за помощью к экспертам
Название заказа не должно быть пустым
Введите email
Бесплатные доработки
Гарантированные бесплатные доработки
Быстрое выполнение
Быстрое выполнение от 2 часов
Проверка работы
Проверка работы на плагиат
Интересные статьи из справочника
Поможем написать учебную работу
Название заказа не должно быть пустым
Введите email
Доверьте свою работу экспертам
Разместите заказ
Наша система отправит ваш заказ на оценку 96 005 авторам
Первые отклики появятся уже в течение 10 минут
Прямой эфир