На доске написали пять натуральных чисел, причём необязательно различных. Если вычислить все возможные попарные суммы этих чисел, получится всего три различных значения: 41, 64 и 35. Какое из написанных на доске чисел наименьшее?

4 Окт 2022 в 19:40
89 +1
1
Ответы
1

Наименьшее число на доске можно найти, решив систему уравнений:

а + b = 41,
а + c = 64,
а + d = 35,
а + e = 41,
b + c = 64,
b + d = 35,
b + e = 64,
c + d = 35,
c + e = 64,
d + e = 35.

Подставляем найденные значения сумм:

а + b = 41,
а + c = 64,
а + d = 35,
а + e = 41,
b + c = 64,
b + d = 35,
b + e = 64,
c + d = 35,
c + e = 64,
d + e = 35.

Однако так как есть 3 уникальных суммы, то отсеиваем третью сумму, которой нет среди оставшихся - получаем:

а + d = 35,
b + e = 64,
c + e = 64.

Теперь легко найти, что наименьшее число - это д, так как a, b, c, e > d.

16 Апр в 17:42
Не можешь разобраться в этой теме?
Обратись за помощью к экспертам
Название заказа не должно быть пустым
Введите email
Бесплатные доработки
Гарантированные бесплатные доработки
Быстрое выполнение
Быстрое выполнение от 2 часов
Проверка работы
Проверка работы на плагиат
Интересные статьи из справочника
Поможем написать учебную работу
Название заказа не должно быть пустым
Введите email
Доверьте свою работу экспертам
Разместите заказ
Наша система отправит ваш заказ на оценку 92 493 авторам
Первые отклики появятся уже в течение 10 минут
Прямой эфир