За круглым столом сидит 31 человек. Среди них могут быть рыцари, которые всегда говорят За круглым столом сидит 31 человек. Среди них могут быть рыцари, которые всегда говорят правду, и лжецы, которые всегда лгут, причем лжецов не менее одного. Каждого спросили: «Сколько среди твоих двух соседей лжецов?». Все дали одинаковые ответы. Какое наибольшее число рыцарей могло быть за столом?
Предположим, что сидят k лжецов и (31-k) рыцарь. Каждый человек скажет, что среди его двух соседей k лжецов. Так как все ответили одинаково, то:
(31-k-1) = k,
31-2k = 1,
2k = 30,
k = 15.
Таким образом, за круглым столом могло быть не более 15 рыцарей.