Не могу решить В трёх ящиках лежат красные, синие и белые шары. Число синих шаров в каждом ящике равно общему числу белых шаров во всех остальных ящиках. А число белых шаров в каждом ящике равно общему числу красных шаров во всех остальных ящиках. Сколько всего шаров лежит в ящиках, если известно, что их количество чётно, больше 30 и меньше 50? Запишите решение и ответ.
Пусть в первом ящике лежат красные шары, во втором - синие, в третьем - белые. Пусть количество красных, синих и белых шаров в каждом ящике равно a, b и c соответственно.
Тогда:
Количество синих шаров в каждом ящике равно общему количеству белых шаров во всех остальных ящиках: b = 2a + 2c
Количество белых шаров в каждом ящике равно общему количеству красных шаров во всех остальных ящиках: c = 2a + 2b
Так как количество шаров в каждом ящике четное, то a, b и c - четные числа. Подставляя второе уравнение в первое, получаем:
b = 2a + 4a + 4b b = 6a + 4b b = 2(3a + 2b)
Так как b - четное числo, то 3a + 2b - тоже четное число. Значит, a - четное число и a >= 2.
Подставляя a = 2 в уравнения, получаем: b = 22 + 42 + 4b b = 8 + 8 + 4b b = 16 + 4b 3b = 16 b = 16 / 3 - не целое число, следовательно, a <> 2.
Подставляя a = 4 в уравнения, получаем: b = 24 + 44 + 4b b = 8 + 16 + 4b b = 24 + 4b 3b = 24 b = 8
Подставляя a = 4, b = 8 в третье уравнение, получаем: c = 24 + 28 c = 8 + 16 c = 24
Итак, общее количество шаров в ящиках: 4a + 4b + 4c = 44 + 48 + 4*24 = 16 + 32 + 96 = 144.
Пусть в первом ящике лежат красные шары, во втором - синие, в третьем - белые. Пусть количество красных, синих и белых шаров в каждом ящике равно a, b и c соответственно.
Тогда:
Количество синих шаров в каждом ящике равно общему количеству белых шаров во всех остальных ящиках:
b = 2a + 2c
Количество белых шаров в каждом ящике равно общему количеству красных шаров во всех остальных ящиках:
c = 2a + 2b
Так как количество шаров в каждом ящике четное, то a, b и c - четные числа. Подставляя второе уравнение в первое, получаем:
b = 2a + 4a + 4b
b = 6a + 4b
b = 2(3a + 2b)
Так как b - четное числo, то 3a + 2b - тоже четное число. Значит, a - четное число и a >= 2.
Подставляя a = 2 в уравнения, получаем:
b = 22 + 42 + 4b
b = 8 + 8 + 4b
b = 16 + 4b
3b = 16
b = 16 / 3 - не целое число, следовательно, a <> 2.
Подставляя a = 4 в уравнения, получаем:
b = 24 + 44 + 4b
b = 8 + 16 + 4b
b = 24 + 4b
3b = 24
b = 8
Подставляя a = 4, b = 8 в третье уравнение, получаем:
c = 24 + 28
c = 8 + 16
c = 24
Итак, общее количество шаров в ящиках: 4a + 4b + 4c = 44 + 48 + 4*24 = 16 + 32 + 96 = 144.
Ответ: в ящиках всего 144 шара.